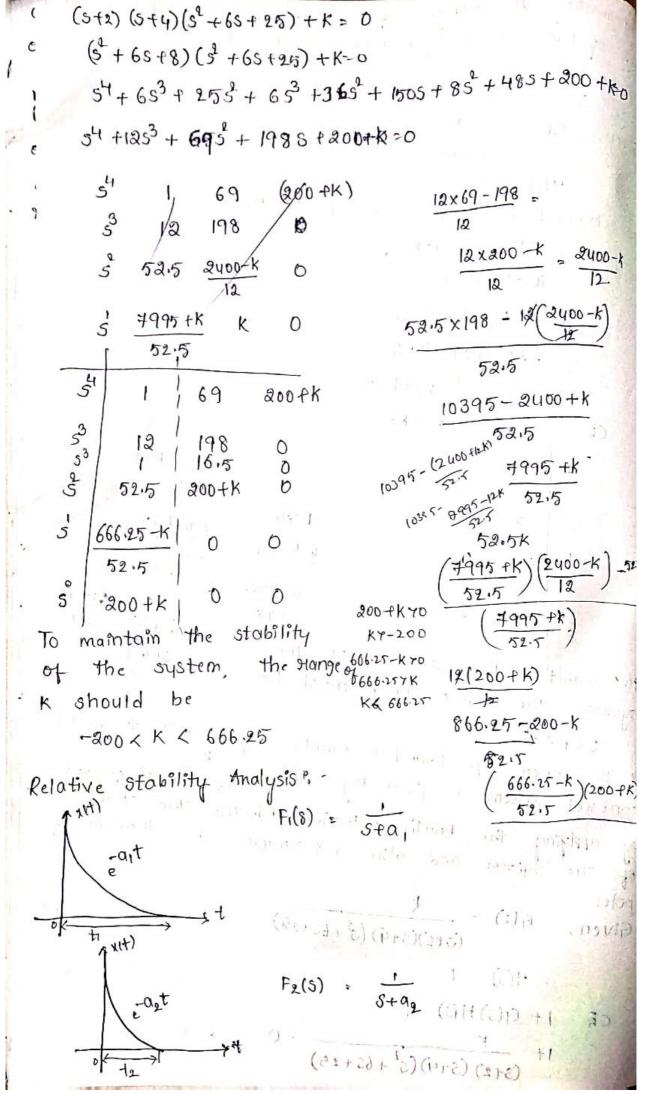

3- Concept of stability and Root Locus Technique -> Every system is designed by empulse siesponse $C(t) = L^{-1}(F(s))$ The system slesponse is given by RIS) c(s) = R(s) F(s) ILT of townster function. RW) = 1 (impulse) Convalution is used to determine c(s) = F(s)c(+) = [(F(s)) the relation ship blw ilp and olp on relation is used to determine the similarity blu 2 signals. → Auto connelation Rxx(7) -> CHOSS COMMelation (Rxy(7) * Determining the similarity blw & same signals is called auto conselation. * Determining the similarity bloo 2 different signals is called chois connelation. -> The stability of the closed loop conterol system is: by using the characteristic equation. 1+ G(s) H(s)=0 To determine the stability of the system by using analytical method is known as Routh Humwitz chiterion → To determine the stability of the system by using quaphical method is known as "Root Locus technique". Rowth - Huarcostx dystremions: A linear time invarient system 95 sould to be stable Stability : if it produces the following response 1) Stable ii) tinite value iii) Predetermined value

x A system is said to be stable it it produces bounded extput fost a bounded input. BIBO signals are step, inpulse. If t-100, olp=0 then it is stable Il ++0, olp+0p then it is unstable cinstable. stable * The unstable Unstable Marginally stable. stable. G(s) H(s) - open loop transfer function. * Impulse the is called as shocking pulse Roudh - thronoitx contention: Location of poles on s-plane for stability: The Helationship blu ilp and olp of a closed, loop control system is expressed by nth order differential equations It can be exposed as $\frac{a_n d^{\frac{1}{10}}}{dt^n} + a_{n-1} \frac{d^{\frac{1}{10}}}{dt^{\frac{1}{10}}} + \cdots + a_{0} a_{0} = b_m \frac{d^{\frac{1}{10}}}{dt^m} + b_{m-1} \frac{d^{\frac{1}{10}}}{dt^{\frac{1}{10}}}$ ao -> olp of the system ai - ilp of the system an, bm age system; physical coefficients The above eq. can be exposessed as ant shao + an-15 ao + - + aore bmsma; + bm-1 smait-- + ban assume that F(s) is the teransfeer function of the closed loop control system. ·: F(s) = system ofp system ip 20 [ans + an + s + --+ ao] = 2i [bms + bm + 5 + ... 20 = bmsm + bm=15m-1. - + bo = F(5) ans + an -1 s -1 + - - + a0 above eq. is a polynomial

Scanned by CamScanner

100	Routh Hustwitz criterion:
	* This method is analytical method to determine the
1	a -1 Ottober On control of
	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
1	* Routh stability criterion is based on the Known coefficients of polynomial into a schedule is known
	as Routh Assacy wouth Husiwitz criterion
	* While constitucting the south
•	one may can be mapped the list
	* In constructing Routh transfer is system is
	column element wie position
	outa to be ofable on that more that
	the suntant is what wastable (or) marginally stable
	To the finist column
	mai indicates that much humber or i
	on the stight braind side of the s-plane.
	Care:
	Normal Routh Annay (All elements in the first column.
1	OHE positive non-zero)
	2) All elements entine in the your is having zeroes
	3) First element of the stability of the
	Using = Douth Criterion, determine
	Using Routh Criterion, determine system represented by characteristic equation of system represented by characteristic equation of the location of stars 1852+ 1852+ 165+5=0. Comment on the location of
	5485+ 185+ 105+300.
	the Hoots of Character contention we stepping
	while applying the Routh stability continue the location characteristic equations for determine the location
	of poles i.e. 1+ G(s) H(s) = 0
	of poles i.e. I+ 9(5) H(S) = 54+853+185+168+5=0
	0 10 1/41 9.16 (7/1)
	$\frac{8 \times 18 - 16 \times 1}{8}$ $\frac{8 \times 5 - 1 \times 0}{8}$
	53 8 16 0 16x16-8x5 16x0-0x8
	1000
	13.5x5-0x16 13.51x0-16x0
	3,5 · log 13.5
	\$ 5 0 0 5x0+
-	


All elements in the fisist column are positive.
- system is said to be stable.
as with and an polynomial writer
to having a work that lies on less many
c diane
By Routh stability chite the characte Hestic egin
By Routh stability chitemion determine the daning of By Routh stability chitemion determine the daning of the System suppresented by the characterestic egin the system suppresented by the characterestic egin to continuous the system suppresented by the characterestic egin to continuous the system suppresented by the characterestic egin to continuous the system suppresented by the characterestic egin to continuous the system suppresented by the characterestic egin to continuous the system suppresented by the characterestic egin to continuous the system suppresented by the characterestic egin to continuous the system suppresented by the characterestic egin to continuous the system suppresented by the characterestic egin to continuous the system suppresented by the characterestic egin to continuous the system suppresented by the characterestic egin to continuous the system suppresented by the characterestic egin to continuous the system suppresented by the characterestic egin to continuous the system suppresented by the characterestic egin to continuous the system suppresented by the characterestic egin to continuous the system suppresented by the characterestic egin to continuous the system suppresented by the characterestic egin to continuous the system suppresented by the characterestic egin to continuous the system suppresented by the characterestic egin to continuous the system suppresented by the characterestic egin to continuous the system suppresented by the characterestic egin to continuous the system suppresented by the characterestic egin to continuous the system suppresented by the characterestic egin to continuous the system suppresented by the characterestic egin to continuous the system suppresented by the characterestic egin to continuous the system suppresented by the characterestic egin to continuous the system suppresented by the characterestic egin to continuous the system suppresented by the characterestic egin to continuous the system suppresented by the characterestic egin to continuous the
955-205 +1053-5-95 characteristic egn. of noots of characteristic egn. of noots of characteristic egn.
1 000(1)119
of noots of characteristic eqn. of noots of characteristic eqn. while applying the Routh stability criterion, we have characteristic eqn 1.e., I+ G(5) H(5) 20 sequine the characteristic eqn 1.e., I+ G(5) H(5) 20 Hequine the characteristic eqn 1.e., I+ G(5) H(5) 20 Given, I+ G(5) H(5) = 935 + 2054 + 1052 - 52 - 95 - 1020 Given, I+ G(5) H(5) = 935 + 2054 + 1052 - 52 - 95 - 1020
Given, 17 GW, -20x(9) -
$\frac{1}{5}$
-200+90 -20+90
(2 3 9.55 '-18.5 0 -20 -20
9.55 x(-1) - (-20)(-15 x)
9.55
s' -16.77, 0 0 -9.55 -240 = 9.55
0 -10
anablem
1 . 00[(10.0][0][9]
having 5 Hoots. Out of 5 Hoots, 3 Hoots lie on the Hight - hand Out of 5 Hoots, 3 Hoots lie on the Hight - hand The 5-plane due to 3 sign changes in the
out of 5 900ts, 3 400ts he sign changes in the
side of the is unstable.
out of 5 900ts, s noor to 3 sign changes in the side of the 5-plane, due to 3 sign changes in the side of the 5-plane, due to 3 sign changes in the stability
Model - a " Jetc Hulle
Construct Routh Annay and Geteristic egin of the sym whose characteristic egin of the egin of the sym whose characteristic egin of the egin of th
0, 1, 0
the no- of 900th lie on sight of the s-plane, the no- of 900th lie on sight of imaginary axis
the no- of 900th lie on slight of maginary axis
police of the control
House of the first transfer the moved and
there of the tens - nome a british with the work of

_	1 1 1				1	2×8 - 1	QxI ax	20-16x	1
S	6 1	8	20	116	3. F - 21	2		2	
5	2	12	16/	0		1000	3x1	<u>f</u> -0	
54		12	16	D	Consid	desi an		'liary	c9 ⁵ n
s ³		0/	0	D		+ 125 +		1000	
S	0	0	0	0	71 = 25'-	5465	T8 - U		y de
s'	ø	٥	0	D	- N :	5. 4 63	1020	· .	· P
Sol	10	0	0	0		. 45 ³ +		C. Horse	hisk
					ds	tr eerry	4)	i e to	TEAL TO
. , 56	. 1	8	20	16	1		, H	x16-0	1
55	2	12.	16	O	4X	12-12 13	2	10	
54	2	12	16	0		1 - 1		,	
3 3	0	0	0 -	0		12x6-16x		8	4
1000	4	12	0	O		31.	Sapring.	1	
. 5	611	- 16	. 0	D		3 ,1	1-31-		
5	1.33	0	٥	D		D.	.11-	2	
3	6	0	0	0	at.	the	uitenio	n, the	. Sle
Mhile is no	obses	ring.	the	Routh	the 15	t colum	nr.		h ee
. 10 110	0.3.	Mile .	Jili	091088	nt 10	11.10	night	half 9	b
the S	5-plan	5. 41 m	in in	1	ountion.	Colq o	1.11	1=	F10 Q
Put S	- z	in o	UXITIC	919	quatir	Dies r	18 - 1	r .,	Henr
the s-plane. The s-plane auxiliancy equation. Put s= 2 in auxiliancy equation.									
$(x+4)(x+2) \ge 0$ $x=-4,-2$									
- 8 - 4	4,	5	= /2		il e con	14. Eri		- 10 m	0.0
5	-4 ₁₁	. 8	= 52 = 5-2	10. 12.		, H	1		o yt
9: 1	+93	S	± 12	j			ath	ond at	135
The	direu	2	cha	pacte	sistic	egin is	6	1000	
polyno	mial	°, S	havir	19 6	. 8400H	out &	4 00	(00T),	
es 8.				V					VI AND

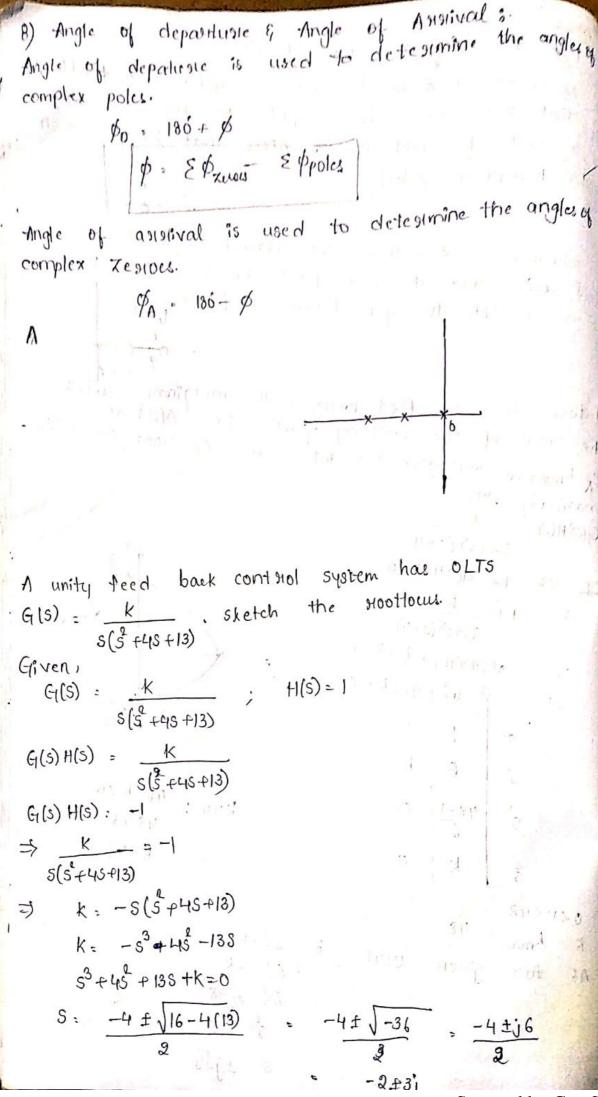
4 9100th le on imaginary axis and Hemaining 2 400th tie on left hand side of s-plane. .. The system is marginally stable. The characteristic polynomial of the system is \$45\$56 + 245 + 245 + 245 + 245 + 235 + 15 = 0. Determine the location of 91001s on 5-plane and hence the stability of the system. st 1 24 24 23 2UX & 3-15X24 91 24 24115 21.3 '21.8 21.3 350 - 360 Consider an auxiliagy eg'n, A: 158+155+15 >0 A. 54+5+1=0 biff. w. n to 3 0 0 15×4-2×15 = 60-30 while obsequing the Routh-Hugwitz Chitemion, thegre is a sign changes in the first column. i.e., 2 400ts will be present in the right hand side of s-plane put st=x in auxiliany egin. 2 = 0-1± \1-41010 00 = -1±\-3 $S^2 = -\frac{1}{2} + \frac{1}{3} + \frac{1}{3}$ $S = f \sqrt{-1+jS_3}$ $S = f \sqrt{-1-jS_3}$ $S = f \sqrt{-1-$

and the stimaining one of	not lie on the left hand state
of the s-plane.	
Hence the system is une	stable.
Model-3// Const-sinct Routh Asimaly of	ind determine the ording
of the system alepaissented to so + sh + 2s3 + 2s4 - 3s4 5 = 0	the characters the rocation of
5 + 5 + 25 + 25 + 35 + 5 = 0	Comment
· noots of characteristic egn.	142-241 143-5X1
s ⁵ 1 2 3	se plantil a literal
s ⁴ 1 2 5	Replace Zeolo by C.
s³ 0 -2 0	(0)(1)(0) 56
53 € -2 0	$\left(\frac{2f\cdot(2)}{e}\right)(-2)-56$
5º 20-42 5 0	$\left(\frac{40-12}{\epsilon}\right)$
€ - 1 /	246-
\$ -5e°-4e-4 0 0	C4E-4)-50
2Ef2 11:1	$\left(\frac{4\epsilon-4}{\epsilon}\right)$ -50
\$ 5 0 0	
Substitute E =0	-4E-4-5E2 E
The second secon	2 E + 2
N. I	-4 e2-4e-5e3
s ³ 0 -2 0	2672
	-u€-u-5€2
$\int_{1}^{2} \times \times$	420 11174
9 -2 0 0	07 6
178 500	" hand side of the
out of 5 9100ts, 2 9100ts	ite on stigni axis and
i i i i i i i i i i i i i i i i i i i	// .
other remaining & 400ts	ie on left hand side of the
s-plane	table
Hence, the system is uns	ELLIS OF
2000	
1	Paniforni on en stadens
	TOTAL TOTAL CONTRACTOR OF THE PARTY OF THE P

Determine the slange of k' those stability of unity-leed back system whose open loop teransfess Aln 18 5(5+1)(5+2) $G(s) = \frac{k}{k}$ 5(541) (542) The characteristic eqn is 1+ G(s) H(s)=0 1 + K (1) 20 S(S+1) (S+2) s(5+1) (5+2) +K,0 (5 + 5) (5+2) + K > 0 53 + 25 +5 +25 +K20 11000 CF = 53 + 35 + 25 + K>0 KYO 6-KY0 67K. To maintain the stability of the system the values of k must be * The open loop transfer function of a unity feed back conterol system is given by E(s)= (S-P2)(S+4) (5+65+25) by applying the Routh exiterion. Discuss the stability of the system and also determine the location of poles. G(1) = K (8+2)(5+4) (5+65+25) Given, - H(S) 21 (0),1 1+ G(S) H(S) = 0 CE

Scanned by CamScanner

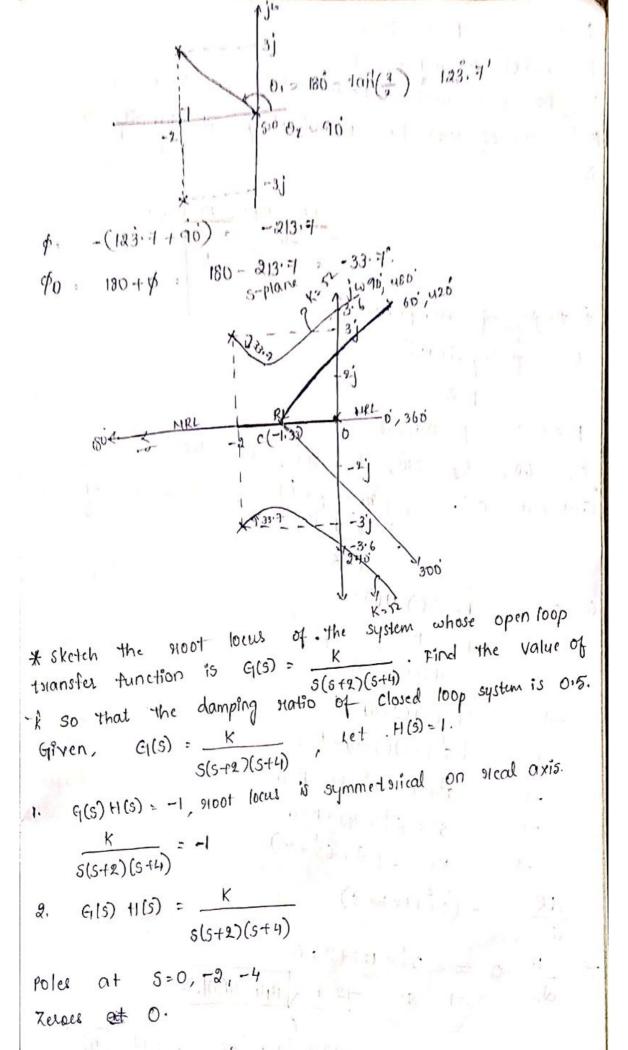
Right Korys Consider two systems are state systems, system & is more of system I because system & is shocking pulse in the given system 1) Determine the given system stable when S = -1 Given, S3 + +S + 255 + 39 = 0 S = -1	fast steeponse of thom the
S+1= 3-	10121 - 101 1 - 7
5= 3-1 3-1(7-1)+25(x-1)+39=	-0
2 1 5 + (7 - 2x+1) t	27 1 - 20 1 31 0
z3-3z+3z-1+7z2-14z+7	+ 25 × + 14 20
$x^3 - 3x^2 + 3x - 1 + 1$	Tourse of State of the State of
1) - 1	20-56
z ³ 1 1 14	remain 4
x2 4 1 20	a Carring and Cu-5
Z 1,5	1. ST 40 TE
7 9 0	to wind are
2 5 0 the of	outh- Husiwitz chitestionage
The first column in the of the system the dane is mo	is stable.
The first column the system the the the X- plane is mo	ste stable man of
1:e, 5:-1	Maria Mariana da La Caracteria de la Car
Root Locus Techniques	the to obtain the
Root locus is defined as locus of the point when	the system goin k' is
varied from o to a.	aistral condition:
Angle condition and Magn To determine the system	is stable on unstable
on monginally stable by	dolling chooler topic
or Moordy and Photogram	18 19 it trais & bon lales


```
i.e., 1+ G(s) H(s) -0 => G(s) H(s) =-1
                           OLTS
  Angle condition:
         G(S) H(S) = ± 180
         (4(s) +KS) / =/A
  The angle condition is used for checking whether
  centain points lying on most lows of not
  Characteristic egin 1+ G(s) H(s) = 0 = G(s) H(s) = -1+10)
    (G(S) HIS) = ± 180
             · + (29+1)180
     9= 0,1,2,3,4 --
  The magnitude condition is used tox
  Magnitude Condition 3.
  finding the value of system gain k' at any point on the most land.
     the most locks
       1 G(S) H(S) | = 1
  Constauction aules for noot locus:
  The most locus is symmetric about meal axis
         1+ G(S) H(S) 20
           G(s) H(s) = -1
             OLCS
                                       function.
  p= no. of poles in open loop toxanste on
 . Rule 2:
                                       function.
  z. no of zendes in open loop thansfer
  P7/7 7 :
                      i-e., 910 ot locres
  p: no. of branches
  Z: no. of branches terminating at Zeroes.
 P-Z. no. of branches terminating at intinity.
  PKZ
 System is stable but practically does not exist
 The point is on steal axis and it is said to be
 Rule - 3 : -
noot focus the night side of that point is sum of
                         96 to be odd
poles and Zeroes that
```

```
G(3) H(3) - K(5+2) (3+6)
         5(8+4)(5+8)
  1+ G(3) H(3) = 0 = G(5) H(5) = -1
1.
   Poles are located at 5=0, -4, -8 (3)
Tenoes au located al S=-2,-6 (2)
2.
                                      PTZ
  P=3 branches of noot-laws
 x= 2 brianches teriminating at 0! 372.
              3.
Poles are terminating either Zerous or intinity
Nate:
Rule 43-
The P-z bylanches are terminating at intinity on a
neal axis with a straight line is known as
angle of asymptotes.
    0 = \frac{\pm (2q+1)180^{\circ}}{p-z}, q = 0,11,2,3... \infty
Ex: 5(5+4) ($ +25+5)+K(5+1)=0
G(5) H(5)=-1
    1 + \underbrace{k(s+1)}_{5(s+4)(s+2s+5)} = 0
Zenoes = 1
poles = 4
P-7-311, 9=011,2,3
 0_1 \cdot f(29+1)180, 9=0, 0_1=60

9=1, 0_2=180
                      9, 28, 03: 300
                      9-3, 04-420
-> The angle blood symptotes = 211
```

5 Centaroid: The point of intersection of asymptotes seal axis it may (00) may not be part of 900+ local C: E (real part) - E (real part) Determine the centroid toa given characteristic equaling 3+ 55+(k+6)5+k=0 3+55+ (2+1)K+68=0 53+55+65+ (5+1)K,0 1+ K(S+1) = 0 $\frac{k(s+1)}{s^3+5s^2+6s} = -1 \Rightarrow \frac{k(s+1)}{s(s^2+5s+6)} = -1$ Zenous at s=-1 poles at 5=0,-2,-3 PYZ $C = \frac{(0-2-3)-(-1)}{3-1} : \frac{-5+1}{2} = \frac{-4}{2} = -2$ 6. Break away (04) Breaking point: This is the point where multiple Hoots of characteristic equation will occur. Break away point (B.A) is lies between 2 poles. Break in point (B.I) is lies bles & xeloes. Between one pole and one Zeno there will a possible either byeak in on byeak away. @ Constant characteristic equation. @ stepstesents in testing of k. (\frac{dk}{ds} = 0) (\frac{dk}{ds} = \textsquare \frac{dk}{ds} = \textsquare \frac 'B. A @ substitute s value in step (2). C11 420 which are sold affine and a


Note :-1. Poles are always of Relocs. (P>,Z) 2. Whenever a Zeno lier on x-axiz (real) and left side of that zero there is no pole and no zero and it is a part of noot locus. After that Zelo we will get break in point. RL L 3. whenever 2 resides are placed adjacent on neal axis and it is a posit of most locus theme. is a possible to get brieak in point a)Intersection of Root locus with imaginary axis: The Hoots of the auxiliary equation i-e, A(s) (at k= kmæginal will give the intersection of 9100+ 10cus with imaginary axis. G(s) H(s) = 5(5+2) (5+4) CE 18 1+ A(9) H(5) = 0 1+ K = 20 5(5+2)(5+4) 3(5+2)(5+4)+K=0 3+65°+85+k=0 53 (ET - 13) () 48-K70 KYO: 487K K<48 0 K K < 48 K= Kmar = 48 OLTF novip rot 5= ± 1/8

Scanned by CamScanner

poles are at \$=0, \$=-2+3jg=-2-3j
PYYX (P=3, X=0)
PY3 = No. of branches will terminate at Xesio.

$$X=0 \Rightarrow No. of branches will terminate at Xesio.$$

 $X=0 \Rightarrow No. of branches will terminate at Xesio.$
P-X=3 \Rightarrow 9=0,1,2,3
0= $\pm (aq+1)$ 180
PX.
P-X=3 \Rightarrow 9=0,1,2,3
0= ± 60 03= ± 300
02= ± 180 04= ± 420
Centroid, C= $\frac{1}{2}$ (Neal post) - $\frac{1}{2}$ (Heal post)
P-X.
CE 1 + G(5) H(5)=0
1+ $\frac{1}{2}$ (As +13) + K=0
 $\frac{1}{2}$ (A

PYYZ,
$$P=3$$
, $Z=0$

P: no of belanches: 3

Z = no of belanches teelminating at zeroel = 0.

P-Z: no of belanches teelminating at jw.

P-Z: no of belanches teelminating at jw.

ARL NRL RL NRL,

P-Z: NRL NRL,

P-Z: 3, 9 = 011,2,3

01 = 60, $\theta_2 = 180$, $\theta_3 = 300$, $\theta_4 = 420$

Centroid, $C = \mathcal{E}$ (neal paul)

P-Z

P-Z

6) CR is 1+ G(s) H(s):00

 $\theta = \frac{1}{3} + \frac{1}{3} + \frac{1}{3} = \frac{1$

Scanned by CamScanner

Given, damping statio is 0.15 (9)

But
$$\cos \theta = \theta$$
 $\theta = \cos^{2}(\theta) = \cos^{2}(\theta)$
 $\theta = 60$

K. 1.13.13

* The unity θ b system has 0LTs θ (θ) = $\frac{k(s+\theta)}{s(s+4s+11)}$

Sketch the shoot focus.

Given, θ (θ) = $\frac{k(s+\theta)}{s(s+4s+11)}$

1. θ (θ) = $\frac{k(s+\theta)}{s(s+4s+11)}$

2. Potes xeroes at $s = -\theta$

Potes at $s = 0$, $s = -2+j\sqrt{7}$
 $s = -4+j\sqrt{16-417(11)} = -4+j\sqrt{-28} = -4+j\sqrt{27}$

PTTX, $\rho = 3$, $\chi = 1$.

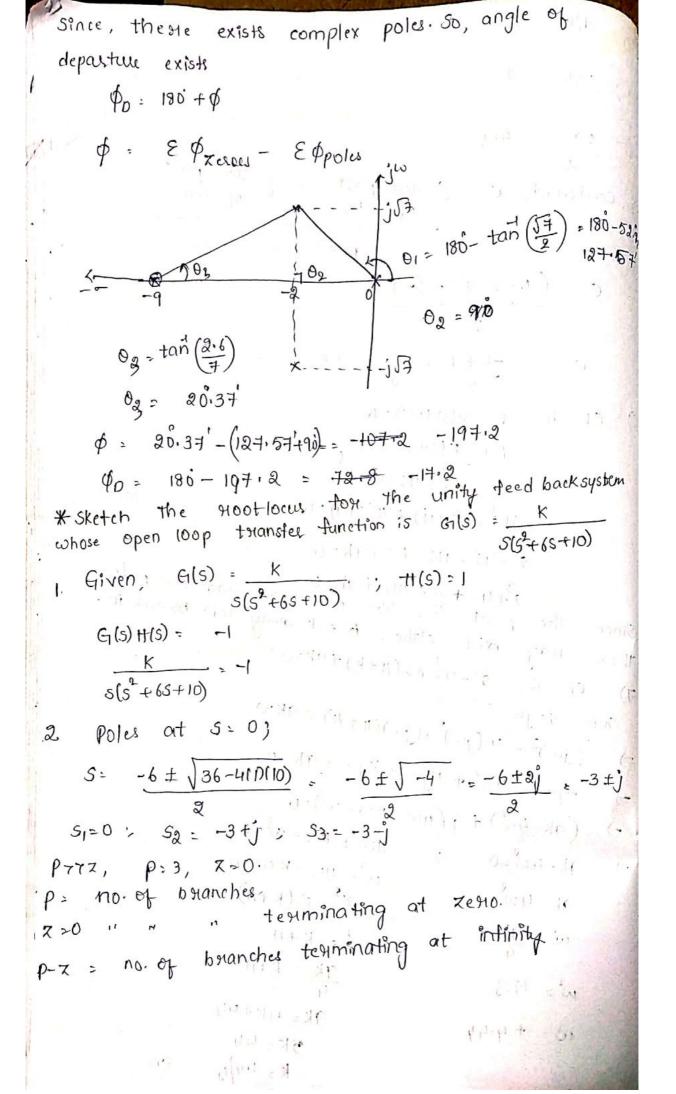
P= no. of branches θ

The prior of the same has θ

NRL

RL

NRL


P-X

1. Angle of asymptotics:

 $\theta = \frac{1}{2}(29+1)$ 180

P-Z θ = 0.112

Scanned by CamScanner

1) Angle of asymptotes:

(a) Angle of asymptotes:

(b)
$$\pm (2q+1) 180$$
; $p-z=3$
(c) $\pm (2q+1) 180$; $p-z=3$
(d) $\pm (2q+1) 180$; $p-z=3$
(e) $\pm (2q+1) 180$; $p-z=3$
(f) $\pm (2q+1) 180$; $p-z=3$
(g) $\pm (2q+1) 180$; $p-z=3$
(e) $\pm (2q+1) 180$; $p-z=3$
(f) \pm

on the difference in the pulse signal & generates an esision signal * The amplified analog signal notates the sextromotor to position tool on job. The Exansducer attached to cutterhead * convert the motion into an electrical signal * Then elect Hical signal - digital phase signal by Alo converter; this sql is compared with the PIA pulse x It there is any difference blu these &, The controller sends a sql to the segrometer to preduce it or Thus the system automatically consects any deviation in the desired olp tool position. That complex parts can be produced with uniform the maximum milling speed. tolerances at more with out the to send of our of the said

LOS tupe Two system VI-TIMU

Stability & Root Locus e=11 tog

Stability:

The term stability refers to the stable working Condition of a Control System. In the Stable System, the output is protectable and Pinite and stable for at given input If the System output is stable for all the Variati--one of "to parameters, then the system is Called absolutely stable System. = 209

If adsystem output pas stable for a l'imited range of Variations of its parameters then the system is called Conditionally stable System.

ROUTH HURWITZ Criteria:

* (the Routh Hurwitz Griteria Can be stated as

The necessary Condition for stability is follows X all the Coefficients of the polynomial be

If some of the Coefficients are zero (ox) positive. negative them, it can be concluded that the system is not stable of the ilodorog

when all the Coefficients are positive, the system need not to be stable because eventhough the Coefficients are positive some of the roots may lie on right half of

se positive and the roots should lie on left half of s-plane. Letter us consider the characteristic polynothe missing terms our considered as advollarm-2005 14 a 50 14 a 50-2 + -- 2014 4 an 15 + anso=0 S: agosod, sait poissollot of cesso and COSC : Normal Routh Array 5°-1: a, a3 a5-290895 110 70 cuox A 11-920) 19190 told abor dis 1001-70 tomaly told in- 1900 5n-3; C, C2 2033 = -2019 300 2103019 2moldon9. 1) Using Routh Calteria, determine the stability of the system represented by the chopertens where $b_1 = \frac{|a_0|}{|a_1|} \frac{a_2|}{a_3|} \frac{|a_0|}{|a_1|} \frac{|a_0|}{|a_0|} \frac{$ b3 = - a ab siterestoprodo noviro los 40 29 to ap 3+201+881+88+42 $C_1 = -\begin{vmatrix} a_1 & a_3 \\ b_1 & b_2 \end{vmatrix}$ $C_2 = -\begin{vmatrix} a_1 & a_5 \\ b_1 & b_3 \end{vmatrix}$ $C_3 = -\begin{vmatrix} a_1 & a_5 \\ b_1 & b_3 \end{vmatrix}$ $C_4 = -\begin{vmatrix} a_1 & a_5 \\ b_1 & b_3 \end{vmatrix}$ The routh hurwitz Criteria Can be stated as followso The necessary and sufficient condition for Stability is that, all the elements in the first coloumn of routh array be positive, if this Condition is not satisfied then the system is unstable and the noiof sign

right half ofte geplane et bas evitiens ec .99019-2 90 Flood 29/8/17 In the process of Constructing routh array, the missing terms are Considered as zero, oim In the Construction of routh array one may Come across the following three cases Case-i Normal Routh Array Case-ii A row of all Zeroes. ED 10: case-iii First element of row is zero but other elements are non-zeroes. Problems 1) Using Routh Criteria, determine the Stability of the system represented by the characteris--the equation 34 + 853 + 1852 + 165 + 5=0 Comment or the location of soul roots of characteristic equation. Sol-Given characteristic equation 54+853+185+165+5 as it is of 4th order. It Contains 4 roots. Routh Array bo Soli of mol pingling 18; Harried Strong Row 17 Ocho Row 220 16 Dividing row 2 wither processing and etanage ant 112 tout of Rows to 18x1-2x1 5x1-0x1 70 amualo texit barreitoe ton vei nortibad eitt 152: Foron 164 bas 5/dotenie en Rows342

5°; 1.4×5 -1.6×0°; 2.5° = 50 to 2 p. 20 ix 20 od 7

5°; 1 18 5 Row 1

8°; 1 1 2 Row 2

8°; 16 5 Row 3

8°; 107 Row 4

8°; 107 Row 5

As all the elements of first Coloumn are Positive hence the system is stable and all the four roots lie on left half of s-plane.

3) Construct Routh Array and determine the stabinality of the system whose characteristic equation is $5^6+25^5+85^4+125^3+205^2+165+16=0$. Determine the novot roots 19 lying on right half of s-plane, left half of s-plane and on imaginary axis.

Sol: Given characteristic equation & 5+25+854 +1253 +205+165+16=0

Routh Array

56: 1 8 20 16

55: 2 12 16 0

Dividing 55 row with 2

Dividing of You with 2 or election of the end of the stand of the stan

4

The auxillary equation is 5+65+8=0 Gons Differentiate w.r.t xs 453+125 = 0 wol S. Woll 12 Dividing 53 row As all the elements of first Coloumn are Positive hence the system is stable and all egnolg-2: 10.3 780d +791 00 9il 2100x 2007 9th a) Constanct Routh Array and occursored this object 55 Hall of the system waters 8chadacter to Hilequation is stas +85+126+ 805+365+126+10 10. Peter x (31; th) 13 port 4 etcor foron off some-so : 11 3 nortoupe siteristic equation (6 11: 62 5+25+85 +125 + 205+165+16=0 52 : 3 8 5': 0.31 Rowth Assess 5: 8 30/8/17 As there is no sign change in the elem--ents of first Coloumn none of the roots lie on right half of s-plane, but the row with all zeroes indicate the possibility of roots on imaginary axis. : the auxillary equation is 5+65+8=0 pribivio

$$x^{2}+4x+2x+8=0$$

 $x(x+4)+2(x+4)=0$
 $(x+4)(x+2)=0$
 $x=-4, x=-2$

.. the roots of auxillary equation are

: The roots of auxillary equation lie on imaginary axis.

Hence four roots lie on imaginary axis and two roots lie on left half of S-plane. There--fore, the system is limitedly stable.

3) Construct routh array and determine the stability of a system represented by the characteristic equation 5+5+5+25+25+35+5=0 Comment the location of roots of charact--existic equation.

Soli-Given characteristic equation is

Routh Array: 2136 offst ythrapie down born (4

characteristic equation ass-202-108-5-9-

3 took off to noitosal sett no tasmines · nortoups siteirstronods

S:
$$\frac{-4E-4}{E}$$
 = $\frac{-5E}{2E+2}$ = $\frac{-4E-4-5E^2}{2E+2}$ = $\frac{-4E-4-4-5E^2}{2E+2}$ = $\frac{-4E-4-4-5E^2}{2E+2}$ = $\frac{-4E-4-4-5E^2}{2E+2}$ = $\frac{-4E-4-4-5E^2}{2E+2}$ = $\frac{-4E-4-4-5E^2}{2E+2}$ = $\frac{-4E-4-5E^2}{2E+2}$ = $\frac{-4E-4-4-5E^2}{2E+2}$ = $\frac{-4E-4-4-5E^2}{2E+2}$ = $\frac{-4E-4-4-5E^2}{2E+2}$ = $\frac{-4E-4-4-5E^2}{2E+2}$ = $\frac{-4E-4-4-5E^2}{2E+2}$ = $\frac{-4E-4-4-5E^2}{2E+2}$ = $\frac{-4E-4-4-4-4-4}{2E$

4) Find routh stability criteria determine the stability of the system represented by the characteristic equation $95^5-205^4+105^3-5^2-95-1050$ Comment on the location of the roots of characteristic equation.

-existic equation it is found that some of the Coefficients are negative. Hence, some roots lee on rightmobalt of s-plane. There--fore, the system is mot stable + which ale The routh array is constructed to find the no of roots the on right half of s-plane took Routh Array other referent good rego nevire los 55: 9 10 -9 54: -20 -1 -10 (Eltepto) 63: -200+9 180+90 0195 boro 29/09 9tood of 11-90+2 53: 900 sile tenefor functions soil of energy of the soil 52: -9.54-270 -95 52:00 9:51100915 x97200xt asvig 70 23/09 art obtained by getting the xoot on-of theperore $5^{\circ}: \frac{167.2}{-16.72} = -10.$ 95:19 10 -9 54 : -20 -1 -10 53 , 9.5 -13.5 52 :1-29.42 -10 The poles are markedasx and serves are By observing the elements of first Coloumn, there are three sign changes therefore three roots lie on rightsohalf of siplanes and in

5/9/19mod tout brust of to northerps storythe coefficients are negative Herismobitoon exact enolge to Problemstapir no all etoor 1) A unity feedback control System has an open loop transfer function G(s) = 0 k desketch the root locus. 10 Hod topy 5[52+45+13] 2+00x 40.00 open loop transfer function ones thouse Sol: Given $G_1(S) = \frac{K}{S[S^2 + 4S + 13]} O_1 - 1 - 0S - 15$ Step-1:- To locate poles and Zeroes. +081 P+020-18 For a given transfer function there are no the poles of given transfer function are Zeroes. obtained by getting the roots of the denomin--ator. SF.01- = 5[52+49+13] =0 ⇒ S=0, S2+45+13=0 \Rightarrow S=0, S= $\frac{-4 \pm \sqrt{16-52}}{9}$ \Rightarrow S=0, S= $\frac{-4 \pm \sqrt{-36}}{2}$ => S=0, S=-4±16 $\Rightarrow 5=0; -2+j3; -2-j3$ The poles are markedas'x and zeroes are marked as 'o'. Step-2: To find the root lows for real axis enthere of only one pole on real axis at Ariain. Hence if we choose pany test points

of the test point there exists it only some pole which is an odd number Hence the entire negative real axis will lie on root locus. 5tep-3:- To find the angles of asymptotes and The no. of a symptotes will be equal to $\eta - m$ where n is no of poles i.e., n=300 m is no of zeroes i.e., m=0 .. The no. of asymptotes = n-sm = 340 = 317. Angles of asymptotes = + 180 (29+1) = B81+12/1-13 -= XE where 9 = 0,1,2----- n-m + so x stoitasx + 710 \Rightarrow 9=0,1,2,3 [EH-28-1-88] - - [B when 9=0 Angle of asymptotes = $\pm \frac{180}{3} = \pm 60\%$ when 9=1 Angle of asymptotes = $\pm \frac{180^{\circ} \times 3^{+} = 8 \pm \frac{180^{\circ}}{180^{\circ}} = \pm \frac{180^{\circ} \times 3^{+} = 8 \pm \frac{180^{\circ}}{180^{\circ}}$ when 9=2 Angle of asymptotes = $\pm \frac{180^{\circ} \times 5}{313} = \pm 300^{\circ} = \mp 60^{\circ}$ when 9=3. Angle of asymptotes = ± 180° x 7 = ± 420° = ± 60° Centrold = Sum of poles - Sum of Zeroes (G) n-m $=) (\text{entroid} = \frac{-2 + \hat{1} \cdot 3 - 2 + \hat{1} \cdot 3}{3} = \frac{-1 \cdot 3}{3} = \frac{-1 \cdot 3}{3} = \frac{-1 \cdot 3}{3} = \frac{-1 \cdot 3}{3}$ 6/9/17 step-4:- To find break away and break in point The closed loop transfer function is 1217

el considering Historia existent point tring test et to extige city enamber (ets) enamber od en en en de de de regative seal axis will (2) 1766 on (2) sot logs step-3: To find the angles top asymptotes and C(9) = 9[92+49+13] of louges ad Itisak estatems[52+45+B] +K on 5/92+45+13 $\frac{C(5)}{R(5)} = \frac{93}{5} \times \frac{99}{135} \times \frac{1}{135} \times$ ". The characteristic equation is so on en 93+49249397K=0 = 29totgaryen 70 29/paA => K=-[53+452+135] -0 where 9 = 0,12. Differentiate k w.r.t s' when g=0 Angle of asymptotes = + 180° Put dx =0 ushen gel 352+85+13=0 - 29totgraveo 70 spriA S = -8±164-156 S-P andw. Angle of osymptotes = 1 3 = -8± V-92 E=P nanco "00 + 38 = 48 + 9 9.5 + = estotanyes to signA Certroid = Sum of poles - Sund of Zeroes S=-1.3+11.5 m-1 => S=-1.3-j1.5 ; -1.3+j1.5- €H == biostas) (= when s= -1.3-11.5 FIPE => K= - {(-1.3-j1-5)3+4(-1.3-j1.5)}+13(-1.3-j1.5)}

D => k=- [53+452+135] to exetrogeb to elpon. \$ 6-19 (cav. 3 4) 1.5)3 444 (pr3/1/5)2+ 13(-1.3+1/5)] gote => K = real Since the values of uke for S==1.3±ji.5 are not real and positive. The rooty locus has neither break away or break in points. Step-5:- To find angle of departure Let us Consider the Complex pole P2, draw Vectors from all other poles to P2 oras of most pronipomi pritoups no Let the angles of these 0= WU- X :. 0, = 180° - tan-1 [3] ⇒ 01=180°- 56.3°+8.13 = (0.8) μ = 1 = prise of 9/2/12/3.6 x 30 and prise of of + 30 ould the volue of + : Angle of departure from Complex pole P2 is eserth the root locus ([0+10]-081+29 whose bat P2 = 180° - [123.6° + 98] of anitoust softenost the angle of departure from Complex pole

:. Angle of departure at P3 = 4 33:6 = x = 0 step-6:-To find (xossing) point on imaginary The characteristic equation sis ov set some end eng3+452+139+K=Ogvitieng bas loss ton neither break away or break in pulled tug → (gw) +4(gw) +13(gw)+K=0 boll ot -2-99+8 1016 6 = 309 03 2400 + 1390 + K = 0,500 00 00 +91 => K-4m2 +j(13m-m3) = 60 mort exotosV on equating imaginary term to zero $13w - w^3 = 0$ \Rightarrow $13 = \omega^2$ $\Rightarrow \omega = \pm \sqrt{13}$ ⇒ w=+3.6 On equating real part to zero k-4w2 =0 => K=402 = 100 = 100 = 100 = 100 => K=4(3,6)2= 51.84 × 52 The Crossing point of root locus is ±93.6 and the value of k at its crossing Point is 52. Half slog volgmes most scotrogob to slond: 2) sketch the root locus of the system whose transfer function is G(S) = - k Find the value of k so that the damping ratio of closed loop system 95 0.5.

Step-1:—To locate poles and zeroes

No. of zeroes m = 0The poles of the transfex function are the roots of equation = extension to slope s = 0 s = 0, -2, -4

Step-2: To find the root locus on real axis.

Test point blue 0 and -2

To the tright of this test point real poles and zeroes, is one which is an odd number. Hence real axis between s=0 and s=-2 lies on root locus.

Test point blue -2 and -4

To the right of this test point, the do totals no of real and serves is two which is an even number. Hence negative real axis by 52-2 and 5=-4 does not lie on root locus.

Test point and to the left of s=-4

To the right of this test point, the total no. of real poles and zeroes is three which is any odd number. Hence negative real axis from s=-4 to -00 lies on root locus.

Step-3:-To find angle of asymptotes and Centroid.

where 9=0,1,2, --n-m=3-0=3. bas eslog stood of 1-1-9548 => 9=0,1,2,3 No. of 3exoes m=0 the poles of the transfer functions and Angle of asymptotes = ±180(29,+1) to 2 toos 0=[8+8][8+8]8 when 9=1 Angle of asymptotes = +180[29+1] +180x3 +180x3 bas o wid thing toget when 9=2 Angle of asymptotes = mem = = 180 x5 H- pur e- m/d to=#300 = 760 when 49=3 og test eitt 70 their git l'Angle of asymptotes= ±180 [29+1] ±180 x 701 is of given number. Hence negative seed axis = ± 420 = ± 60

entroid (G1) = Sum of poles - Sum of Zexpes Centroid (G1) = P-= 2 to tag! aft of the topo togg test att tong Grant 300 tolgir att of Step-4: To find break away and break in points The closed loop transfer function is tous $C(s)^{23}$ G(s) of G(s) G1+G(S)H(S) 1+G(S) partoto find angle of asymptotes and = ९ [८+२][५५4]

900 0896 10 R(S) 09 S[S+2][S+4] +K 980 989H 30113 es (s) regab kga alpro boil ton lieu yronigomi Ris) (stays) (stays) (stays) boilt or id got? The characteristic equation 93+692+89+K=0 $k = -[s^3 + 6s^2 + 8s]$ — 0Differentiate k w.s.+ (wi) 0 + (wi)0= 4+ w8; + w3- widk = -[352+125+8](Ew-w8)[+ w3-x Patlovak =0 partoup3 Equating imaginary 1. 352+125+8=0 S= -12 ± V149-96 = -2 ± 0.9 0= 60-9484 S= - 11; -2.9 -0.85; -3.15 8v ± = w = when 5= -0.85 bod = ek=-[53+692+89] took to The Grossing 2 + 15 = [C-0.85)3 + 6(+0+85)2+8(-0.85)] eulov att K= 3.07 when g=23.15 rot x 70 sular (1) => K= - [(-3.15)3+6(-3.15)3+8(-3.15)] => 1.+31 Draw a line of such that For and between Since k is positive and real for s=-0.85

Since there are no complex pole or zero we will not find angle of departure. Step-6: To find Crossing point on imaginary axis. The characteristic equation 53+652+89+K=0 Put S=jw $(jw)^{3} + 6(jw)^{2} + 8(jw) + k = 0$ -jw3-6w+j8w+K=0 K-6w2+J(8w-w3)[=0+281+28]-= Equating real values Equating imaginary 0 to 3 ero values to o. op Kobw'=0 8w-w3=0. 31.1 => K=6W2 $\Rightarrow 8-\omega^2=0$ \Rightarrow 8= $\dot{\omega}^2$ (28 10 - P. K= 48) - = 3: => w= ±18 28.0- = 2 nades = w= ±2.8 The Crossing of root locus is + 12.8 and the value of k at this crossing point is 48. To find value of k for &=0.52 nades Let x = Cos 615 +860(21.8-) 2+6(21.8-) - = x = 0 Draw a line OP such that the angle between line or and negative real axis is 60 . The meeting point of line op and root locus be

of 9 kgg/4 Product of length of vector from allo 2911 P- box o Poles to the point 15-Savitopen Product of length of vector from all P-2 to 431 adt zeroesito the point 5=9don Lot of st. 3x 1/8x335 test eight to their ant of one end of one 3) the open loop transfer function of unit feedback System is given by G(S) = K(S+9)

S[S²+45+1] sketch the root locus of the system. sol:-Given the open loop transfer function is G(5)= 8(5+9) estatantes to spa Step-1:- To locate poles and zeroes The Zeroes fromingiven transfer function are obtained from 5+9=0 => S=-9 when g=0 : Z=-9 The poles of the transfer function is A obtained from s[s2+45+1]=0 300 = 3FC + 85011 = 4+ V16-44 10 9/pnA S=0; -4±15.29 . s p nadw POPt= 02H + (2)081 + 2 9 9 totompero 30 9/01 A P=0; P== -2-j2.64; P3= -2+j2.64; rm) no. of Zeroes m=1 ino of poles Step-2:- To find the root lows on real axis choose a test point in between oand

is one which is an odd number Hence the negative real axis in between 0 and -9 lies on root solousto April to toubor choose a testit point of the left of 5=-9, to the right of this test point, the total no of poles and Zoxoes is two which is an even number. Hence the negative real axis from -9 to -00 does not lie on root locus. 9/9/17 Step-3:- To find angle of asymptotes and centroid Angle of asymptotes = ±180° (29+1) where n=no.04 poles=3 Tog stood or 1-gote the serves thorning were the serves tunction on 9=0,1,2---- 0-19+2 most benietdo 9=0,1,2 when 9=0 Angle of asymptotest= ±180°(1) = £90° att when 9=1 = [1+2++3]2 most beginted Angle of asymptotes = ±180(3) = ±270 = 790° Angle of asymptotes = ±180(5) = ±450° = ±90° Centroid (G1) = Sum of Poles - Sum of Zeroes $G_1 = 0 - 2 - \frac{12}{12} 64 - 2 + \frac{1}{12} 64 - (-9)$ sixo los con esial took and borg of s-gote

Step-42 To find break away and break in points

 $\frac{-(3)}{R(S)} = \frac{G(S)}{G(S)}$ Let H(s)=10P+1+51-081=980+0936 to 3/pnA. alog relation to state $\frac{1+G_1(S)}{C(S)}$ = $\frac{1+G_1(S)}{C(S)}$ $\Rightarrow \frac{c(s)}{R(s)} = \frac{G(s)}{1 + G(s)}$ (1) c(s) of slog K(s+9) stutengs bo to slonA: 2 ixo promportion no s[stys+1]+ x(s+9) both of -1 +42 $\Rightarrow \frac{C(5)}{R(5)} = \frac{3 + 45^{2} + 115 + k5 + 9k}{5^{3} + 45^{2} + 115 + k5 + 9k}$ By seeing observing the location of poles and Zeroes ?+ Can be Concluded that there will not be any by break away or break in points. 5tep-5:- To find angle of departure Let us Consider the Complex pole P3, draw vectors from all other poles and zeroes to the pole P3. Let the angles be 0,0, and 03. 11+K-W==0 Asymptotes IV - W Angle of departure = 180° - (sum of angles at Poles) + (sum of angles at Zeroes) $=180^{\circ}-(0_{1}+0_{2})+0_{3}$ 01=180° + +0-1[2.6]

O₃= tan-1
$$\begin{bmatrix} 2-6 \\ + \end{bmatrix}$$
 = 20,3 $\frac{1}{4}$ = 20,3 $\frac{1}{4}$. Angle of departure = 180-[127.1°+90] + 20.3 $\frac{1}{4}$. Angle of departure at Complex pole P₂ is negative to the argle of departure at Complex pole P₃. Angle of departure at pole P₂ ?S +17 . Step-6:-To find (rossing point on imaginary axis the characteristic equation is $S^3 + 45^2 + 115 + 45 + 45 + 45 = 0$

Put $S = \frac{1}{4}\omega$

$$(9\omega)^2 + 4(\frac{1}{4}\omega)^2 + 11(\frac{1}{4}\omega) + k(\frac{1}{4}\omega) + 9k = 0$$

$$(9k - 4\omega)^2 + \frac{1}{4}(11\omega + k\omega - \omega)^2 = 0$$

Equating imaginary values Equating real values to o' $\frac{1}{4}\omega + \frac{1}{4}\omega + \frac{1$

13-571- 1 k- 44- 2 .

4) sketch the root locus for unity feedback system whose open loop transfer function is G(s) = k Sol: Given open loop transfer function is s[sit6stio] $G_1(S) = \frac{k}{8 \times 5 \times 6 \times 10}$ e = P. asde $O_0 = \frac{k}{8 \times 5 \times 6 \times 10}$ $f_0 = \frac{k}{8 \times 5 \times 6 \times 10}$ $f_0 = \frac{k}{8 \times 5 \times 6 \times 10}$ $f_0 = \frac{k}{8 \times 5 \times 6 \times 10}$ $f_0 = \frac{k}{8 \times 5 \times 6 \times 10}$ $f_0 = \frac{k}{8 \times 5 \times 6 \times 10}$ $f_0 = \frac{k}{8 \times 10}$ $f_0 =$ Step-1:- To find Poles and Zero's There are no texoes that is m=0 The poles of the transfer function are obta--in from s[s2+69+10]=0. 5=0, 52+65+10=0 storiog of story -60+0 136-400 Nord point of the gote navige et nortanist of satemost qual based) sott. $S=0, -\frac{6\pm j^2}{2}$ (2) rd (2) rd (2) 5=0, -3-9 ;-3+9 (e)H(e)10+1 (e)3 P_1=0;P_2=7-3-1;P_3=-3+1 (2)= (3)5 1. No:07 poles n=3 (3)=11 (3)5 Step-2: To find the root locus on real axis There is only one pole on real axis at ong -in. Take a test point to the left of s=0, to the right of that point the total no of poles and Zernes is I which is an odd number. Hence the entire negative real axis from 0 to -0 lies on root lous. [edited + ed + ed = = x Step-3:- To find angle of asymptotes and centroid Angle of Asymptotes = ±180°(29+1) where 9=0,1,2---n-m ⇒ n-m=3-0=3 = 0= 3b 2A:

JO-WINDELPHIN FBI- = 5 6

Angle of asymptotes =
$$\pm 180^\circ$$
 = $\pm 60^\circ$

when $9=1$

Angle of asymptotes = $\pm 180^\circ$ x3 = $\pm 180^\circ$

when $9=2$

Angle of asymptotes = $\pm 180^\circ$ x5 : $\pm 300^\circ$ = $\mp 60^\circ$

when $9=3$

Angle of asymptotes = $\pm 180^\circ$ x7 = $\pm 40^\circ$

Centroid (Gi) = $0-3-9-3+1$

Gr=-2

Step-4: To find break away and break in points

The closed loop transfex function is given

as $c(s) = \frac{G(s)}{1+G(s)H(s)}$
 $c(s) = \frac{G(s)}{1+G(s)}$
 $c(s) = \frac{G(s)}{1+G(s)}$
 $c(s) = \frac{G(s)}{1+G(s)}$
 $c(s) = \frac{G(s)}{1+G(s)}$

The characteristic equation is \$\frac{3}{5}+65\pm 105+k=0

 $k = -[s^3+6s^2+105]$

Differentiate is with to k

 $\frac{dk}{ds} = -[35^3+125+10] = 0$
 $\frac{dk}{ds} = 0 \Rightarrow 35^3+125+10=0$
 $\frac{dk}{ds} = 0 \Rightarrow 35^3+125+10=0$

$$S = \frac{-12 \pm \sqrt{29}}{6}$$

$$\frac{1}{6} = \frac{1}{12} = \frac{1}{12}$$

$$\frac{1}{6} = \frac{1}{12} = \frac{1}{12} = \frac{1}{12}$$

$$\frac{1}{6} = \frac{1}{12} = \frac{1}{12} = \frac{1}{12} = \frac{1}{12}$$

$$\frac{1}{6} = \frac{1}{12} = \frac{1}{12} = \frac{1}{12} = \frac{1}{12}$$

$$\frac{1}{6} = \frac{1}{12} =$$

02=900

$$P_3 = 180^{\circ} - (0.702)$$
 P3 = -72°

the angle of departure at Complex pole P2 will be opposite to angle of departure at pole P3. .. Angle of departure at Pz=72°.

Step-6:- To find Crossing point on imaginary axis The characteristic equation be 53+652+105+k=0

Put 5= jw (ju)3 +6 (ju) 7+ 10(ju) +k=0)0+ (200) = 3 -jw3-6w2+10jw+k=0 1 1039 $k-6\omega^2+000\omega-\omega^3)=0$

Equating real terms to Equating imaginary terms Zero (c-) of to zero - - >

exitized 10m-103=000 = 4 $k - 6w^2 = 0$ k=6w2 or departure of departure of ages

consider of solo x story to be diagonal we trio

k=60 :8. 9/09 of 89/09 w= ±3.16 100 most

congles be good of The root locus process imaginary axis at ± 3.16 and the value of k at crossing point is 60.

8,= (80°-ton (3)

B, = 16156 x 162°